Petition to list the Mohave Ground Squirrel (Spermophilus mohavensis)

Photo by P.Leitner, 1997

As a Federally Endangered Species

Defenders of Wildlife Dr. Glenn R. Stewart 2005

TABLE OF CONTENTS

I.	NOTICE OF PETITION	4
II.	EXECUTIVE SUMMARY	6
III.	SYSTEMATICS	6
Α	A. Species Description	6
В	B. Taxonomy	6
С	2. Distribution	7
IV.	NATURAL HISTORY	9
Α	A. Habitat Requirements	9
В	B. Home Range and Movements	.10
С	2. Food Habits	.11
D	D. Seasonal and Daily Activity	.13
E	. Social Behavior	.14
F.	. Reproduction	.14
G	G. Interaction of Mohave and Antelope Ground Squirrels	.15
Η	I. Predators	.15
V.	POPULATION STATUS AND TREND	.16
VI.	APPLICABILITY OF LISTING FACTORS	.18
Α	A. Present or threatened destruction, modification, or curtailment of habitat or range	.18
	i. Curtailment of Range	.18
	ii. Habitat Destruction	.19
	Urban and Rural Development	.19
	Agricultural Development	.20
	Military Operations	.20
	Energy Production	.21
	Transportation	.22
	iii. Habitat Degradation	.22
	Off-highway vehicle use	.22
	Livestock Grazing	.24
	Habitat Fragmentation	.25
	Domestic Animal Predation	.25
	Rodenticides/ Pesticides	.25
	Summary	.26
В	8. Inadequacy of Existing Mechanisms	.26
	State Laws and Regulations	.26
	Federal status	.27
	The West Mojave HCP	.28
С	2. Over-utilization for commercial, recreational, scientific, or educational purposes	.30
D	D. Disease or predation	.31
E	. Other natural or anthropogenic factors	.31
VII.	. LITERATURE CITED	.32

TABLES

TABLE 1. Mohave Ground Squirrel GIS Results – Threats	
TABLE 2. Ownership and Protected Status of Mohave Ground Squirrel Range.	

FIGURES

FIGURE 1.	Presumed historic range of the Mohave ground squirrel	41
FIGURE 2.	Current range of the Mohave ground squirrel from Gustafson (1993)	42
FIGURE 3.	Mohave Ground Squirrel Survey Results 2002-2004	43
FIGURE 4.	Coso Study Result	44
FIGURE 5.	Current Mohave Ground Squirrel Status	45
FIGURE 6.	Mohave Ground Squirrel Land Ownership	46
FIGURE 7.	Mohave Ground Squirrel Threats	47
FIGURE 8.	Mohave Ground Squirrel Remaining Range	48
FIGURE 9.	West Mojave Plan: Mohave Ground Squirrel Conservation Area Compared	to
	Current Status.	49

I. NOTICE OF PETITION

Ms. Gale Norton Secretary of the Interior Office of the Secretary Department of the Interior 18th and C Street N.W. Washington, D.C., 20240

September 12, 2005

Dear Ms. Norton:

Defenders of Wildlife and Dr. Glenn R. Stewart hereby formally petition to list the Mohave ground squirrel, endemic to California state, as an endangered species pursuant to the Endangered Species Act, 16 U.S.C. 1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14 (1990), which grants interested parties the right to petition for issue of a rule from the Assistant Secretary of the Interior.

Petitioners also request that critical habitat be designated concurrent with the listing, as required by 16 U.S.C. § 1553(b)(6)(C) and 50 CFR 424.12, and pursuant to the Administrative Procedure Act (5 U.S.C. 553).

We are aware that this petition sets in motion a specific process placing definite response requirements on the U.S. Fish and Wildlife Service and very specific time constraints upon those responses. 16 U.S.C. § 1553(b).

Sincerely,

Contrin Witherson

Cynthia Wilkerson California Representative Defenders of Wildlife 926 J Street, Suite 522 Sacramento, CA 95819 Phone: 916-313-5810 Fax: 916-313-5812 Email: cwilkerson@defenders.org

Defenders of Wildlife is a national, private non-profit organization with more than 475,000 members nationwide, 100,000 of which reside in California. Defenders is dedicated to protecting all wild animals and plants in their natural communities. To this end, Defenders employs science, public education and participation, media, legislative advocacy, litigation, and proactive on-the-ground solutions in order to impede the accelerating rate of extinction of species, associated loss of biological diversity, and habitat alteration and destruction.

Dr. Glenn R. Stewart is Professor Emeritus of Zoology and Environmental Science in the Biological Sciences Department at California State Polytechnic University, Pomona, where he has been employed for 42 years. He has taught courses in Mammalogy, Herpetology, Wildlife Ecology, and Environmental Science, and conducted research on a variety of mammals and reptiles. He is the author or coauthor of 36 published papers and a member of nine professional societies. In 1985, he received the Cal Poly Pomona College of Science's Ralph W. Ames Award for Distinction in Research, and in 1989, the university's Outstanding Professor Award. Representing Cal Poly Pomona, Dr. Stewart served on the Board of Governors of the California State University Desert Studies Consortium from 1990 to 2003. In the late 1960's, he was one of three scientists to recommend the Mohave Ground Squirrel for state listing as a threatened species, and in 1993, he petitioned the U. S. Fish and Wildlife Service to list the species as threatened.

II. EXECUTIVE SUMMARY

The Mohave ground squirrel (MGS) is endemic to the West Mojave Desert in California. The species is listed as threatened under the California Endangered Species Act. Identified threats to this species include urban and rural development, livestock grazing, OHV use, agricultural practices, military operations, energy production, and transportation infrastructure. Recent monitoring data reveal that over twenty percent of the historic range of this species is no longer occupied by the Mohave ground squirrel. The planned Fort Irwin expansion would fragment one of four remaining populations of the Mohave ground squirrel that appear to be stable, posing a serious threat to the species' persistence. Our GIS analysis reveals that only 9% of the suitable habitat within the historic Mohave ground squirrel range exists in a protected state. Over 78% of the habitat within the species' range is either naturally unavailable, severely degraded, or in a threatened land use. The remainder is under threat from continued development and habitat fragmentation. Current regulatory mechanisms are vastly inadequate to protect this species. With nearly two-thirds of the range in federal ownership, state listing does not ensure conservation. Neither does the proposed West Mojave Plan, which would regulate development on all lands within the entire range of the species except those managed by the Department of Defense. This petition provides compelling evidence that the Mohave ground squirrel must be listed as an endangered species, critical habitat must be designated, and a recovery plan must be developed and implemented under the U.S. Endangered Species Act.

III. SYSTEMATICS

A. Species Description

The Mohave ground squirrel (*Spermophilus mohavensis*) is a medium-sized squirrel with a total length of about 23 cm (9 inches), including a tail length of about 6.4 cm (2.5 inches) (Grinnell and Dixon 1918, Ingles 1965) and relatively short legs. The upper body pelage has been described as grayish-brown, pinkish-gray, cinnamon-gray, and pinkish cinnamon (Gustafson 1993). M. Recht (cf. Gustafson 1993) has observed that juveniles have cinnamon-colored pelage and molt to gray as they mature into adults. He further states that Mohave ground squirrel dorsal hair tips are multi-banded and the skin is darkly pigmented. Both of these characteristics assist in thermoregulation. The eyes are fairly large and set high in the head.

B. Taxonomy

The Mohave ground squirrel is a distinct full species, with no subspecies. It was discovered by F. Stephens in early June 1886 (Gustafson 1993) and formally described as a distinct, monotypic species by Merriam (1889). Best (1995) gives a full account of the taxonomy including changes in generic names. The type locality is near Rabbit Springs, about 24 km (15 miles) east of Hesperia in Lucerne Valley. The Mohave ground squirrel's closest genetic relative, the round tailed ground squirrel (*Spermophilus tereticaudus*), has a contiguous, but

non-overlapping geographic (i.e., parapatric) range. This has lead to some controversy as to whether the two taxa are full biological species (Gustafson 1993). However, the studies of Hafner and Yates (1983) and Hafner (1992) demonstrated a degree of chromosomal, genetic, and morphological differentiation consistent with distinct species recognition. Supporting evidence includes: the Mohave ground squirrel has a diploid chromosome number of 38 while that of the round-tailed ground squirrel is 36; electrophoretic analysis of 24 gene loci coding for 16 proteins revealed a moderate level of genetic differentiation between the taxa (Rogers genetic similarity S = 0.78); and morphometric analysis of 20 cranial characters showed significant differences (p < 0.0001), with the Mohave ground squirrel being larger in all but two characters. Ecological factors, such as the Mohave ground squirrel's preference for gravelly soils and the round-tailed ground squirrels' preference for sandy soils, may serve as a prereproductive isolating mechanism (Hafner and Yates 1983, Hafner 1992) between the two ground squirrels. The species are likely to be isolated behaviorally as well. For example, the Mohave ground squirrel is a solitary species while the round-tailed squirrel is colonial (Recht cf. Gustafson 1993). It is plausible that additional prereproductive isolating mechanisms exist.

In spite of support for distinct species status, evidence of hybridization was found in three specimens, one from about 1.5 miles northwest of Helendale and two from near Coyote Dry Lake about 21 km (13 miles) northeast of Barstow (Hafner 1992). Significantly, Helendale is an extremely disturbed site, ecologically dissimilar from the other study localities with no evidence of hybridization. The specimens collected near Helendale were found adjacent to agricultural fields and nowhere else. The artificially elevated food supply in these fields may have broken down ecological prereproductive isolating mechanisms that normally prevent hybridization (Hafner and Yates 1983) and the authors conclude that retention of full species status for the Mohave ground squirrel is warranted.

Hafner (1992) interpreted the existing data to indicate a zone of parapatry in which there is neutral secondary contact, i.e. no significant competition or intergradation between the species following vicariance and differentiation. The vicariance event thought to initiate the speciation is the Wisconsinan full pluvial which created a network of rivers and lakes near the end of the Pleistocene Period (Hafner 1992).

C. Distribution

The presumed historic range of the Mohave ground squirrel is shown in Figure 1 as delineated by the California Department of Fish and Game (1980). Confined to the northwestern corner of the Mojave Desert, it is bounded on the south and west by the San Gabriel, Tehachapi, and Sierra Nevada Mountains. On the northeast, it is bounded by Owens Lake and a series of small mountain ranges, including the Coso, Argus, Slate, Quail, Granite, and Avawatz Mountains. On the southeast, the range of the Mohave ground squirrel abuts a portion of the range of the closely related round-tailed ground squirrel (*Spermophilus tereticaudis*). The 232 km (144 mile) zone of parapatry of these two species closely follows the network of ancient lakes and rivers that existed in the late Pleistocene Period until about 10,000 years ago (Hafner 1992). While the present Mojave River generally defines the extreme southeastern boundary of the Mohave ground squirrel's range, the species

historically occurred east of the river in Lucerne Valley (see list of specimens examined by Hafner 1992).

The current range of the Mohave ground squirrel is shown in Figure 2 as delineated in Gustafson (1993). The boundaries illustrated here include all known occurrences of the species and of native vegetation types used by the species in the vicinity of known occurrences. Mountain ranges on the periphery of the range are excluded. Also excluded from this revised map is the extreme southwestern toe of the presumed historic range (roughly 1,037 km² or 400 mi²), which is that portion of the Antelope Valley west of Palmdale, Lancaster, Rosamond, and Mojave. Although this area apparently contained squirrel habitat prior to the extensive agricultural development and urbanization of recent decades, and a small amount of habitat still remains, the new boundary reflects the lack of definite records of the squirrel's occurrence here. The squirrel may now be almost completely extirpated from the Victorville to Lucerne Valley portion of its historic range because most of the habitat here has been fragmented or lost due to agriculture and urbanization. However, this region has been retained in the current range because historic records and two recent documented occurrences (R. Jones, personal communication).

As delineated above, the current geographic range of the Mohave ground squirrel includes about 19,800 km² (7,640 mi²) in the western portion of the Mojave Desert in California. This is the smallest range among the ground squirrel species found in the United States. Only the San Joaquin antelope ground squirrel (*Ammospermophilus nelsoni*) in California and the Idaho ground squirrel (*Spermophilus brunneus*) have comparably small ranges (Hall 1981). Also, it is important to note that, even within apparently suitable habitat, the distribution of the Mohave ground squirrel is very patchy. Thus, much of the potential habitat is unoccupied. In part, this probably is due to both naturally and anthropogenically induced local extirpations, and failure to repopulate these vacated sites, as discussed below under threats due to habitat fragmentation.

State Highway 58 bisects the Mohave ground squirrel range between Mojave and Barstow. Extensive trapping efforts in a number of areas south of this highway for the past 5-10 years (P. Leitner, personal communication) reveal that the only significant population of Mohave ground squirrels in this part of their historic range is in one region of about 15 x 20 km in the eastern portion of Edwards Air Force Base. The species appears to be absent from extensive portions of its range in the Antelope Valley, Lancaster, and Palmdale regions (P. Leitner, personal communication). This supports Gustafson's (1993) conclusion that the persistence of the species in the highly developed area between Palmdale and Lucerne Valley is in question. The apparent absence from most portions of the Mohave ground squirrel range south of SR-58 constitutes elimination across 25-30% of the historic range (P. Leitner, personal communication). This is based on surveys throughout the Mohave ground squirrel range from 2002-2004 (Figure 3).

North of State Highway 58 are additional areas where Mohave ground squirrels have failed to be detected in recent trapping surveys. Dr. Leitner's research (P. Leitner, personal communication) indicates a number of areas where human-caused or natural habitat degradation and low habitat suitability present barriers within the north and central portions

of the Mohave ground squirrel range. As a result, the population in these sections of the range may be significantly fragmented. Recent surveys also indicate no evidence of the Mohave ground squirrel over a wide area on the eastern edge of their range. In 2004, this consisted of 15 sites trapped from the El Mirage OHV Area to Fort Irwin. No Mohave ground squirrels were captured. (Leitner, Handout from February 2004 Mohave Ground Squirrel Technical Advisory Group meeting).

In the portions of their range where Mohave ground squirrels have been reliably found (the "core areas" as shown in Figure 5), habitat continues to be developed and lost. Without dedication to maintaining intact habitat in these core population areas and connectivity between them, the trend of local extinction seen in the more developed southern portion of the Mohave ground squirrel range is expected to continue throughout the range.

IV. NATURAL HISTORY

A. Habitat Requirements

The Mohave ground squirrel has been reported from all of the broad community types of Munz and Keck (1959) and Vasek and Barbour (1988), and all but three of Holland's (1986) more narrowly defined communities (Gustafson 1993). It has been observed in habitats described by Holland (1986) as Mojave Creosote Scrub, dominated by creosote bush (*Larrea tridentate*) and burrobush (*Ambrosia dumosa*); Desert Saltbush Scrub, dominated by various species of saltbush (*Atriplex*); Desert Sink Scrub, which is similar in composition to saltbush scrub, but is sparser and grows on poorly drained soils with high alkalinity; Desert Greasewood Scrub, which is dominated by *Atriplex confertifolia* and/or *A. spinescens*; and Joshua Tree Woodland, which includes Joshua trees (*Yucca brevifolia*) widely scattered over a variety of shrub species (Gustafson 1993). These habitat types occur throughout the range of the Mohave ground squirrel. In the northern portion of the range, this species is also found in Mojave Mixed Woody Scrub, typically occurring on hilly terrain and composed of a variety of shrub species (Holland 1986).

Creosote Bush Scrub is the most wide-spread of the broad community types within the range of the Mohave ground squirrel, and also tends to have the greatest production of annual plants. Therefore, it is not surprising that this is the community type in which the Mohave ground squirrel is most often found. This species inhabits flat to moderate terrain and generally avoids steep slopes and rocky terrain (Leitner 1980, Leitner and Leitner 1989). However, juveniles can apparently traverse steep terrain during dispersal (Leitner, personal communication). Mohave ground squirrels exhibit a preference for gravelly as opposed to sandy soils (Hafner 1982), but have been found in sandy and, occasionally, rocky soils (Wessman 1977, Zembal and Gall 1980, Best 1995). The species is not known to occupy areas of desert pavement (Aardahl and Roush 1985).

Essential habitat features consist of availability of food resources and soils with appropriate composition for burrow construction. The presence of shrubs that provide reliable forage

during drought years may be critical for a population to persist in a particular area (Leitner and Leitner 1998). During drought episodes, Mohave ground squirrel populations may fail to persist in low quality habitat. High quality drought refugia, defined by the availability of preferred food sources (winterfat and spiny hopsage in the Coso Range), are necessary to maintain overall populations and act as a source for recolonization of surrounding habitat. As such, the combination of shrub vegetation quality and winter rainfall may explain spatial and temporal variation in Mohave ground squirrel presence and absence.

Although records of Mohave ground squirrel occurrences have been found in a variety of habitat types throughout their range (as stated above), these locations may not be indicative of sustained or persistent Mohave ground squirrel populations because of variability of habitat quality due to natural events (i.e., winter rainfall and annual plant reproduction) and human-related activities which fragment, destroy, or modify otherwise suitable habitat. For example, many of the community types in which the squirrel has been found differ considerably in vegetative composition throughout the range and may not include shrubs or annuals even in years of adequate rainfall (see discussion under food habits). Harris (personal communication) indicates that hardly any historical Mohave ground squirrel locations completely lack winterfat and spiny hopsage, and this is supported by the data presented below under "food habits" from unpublished data referenced in Leitner (2004). Since much of the creosote scrub habitat in the Mojave Desert does not include these shrub species, it may not constitute optimal habitat for the species. Other plant communites may provide suitable habitat only after one or two years of adequate rainfall when populations are expanding, but they will not be consistently occupied after years of less rainfall. These habitats may become population sinks when precipitation levels are suboptimal. Additionally, juveniles can travel considerable distances (see next section), and may appear in habitats that are not permanently occupied. Therefore, it is possible that some of the historical records may be from sites that were occupied only on a transient basis.

B. Home Range and Movements

Adult home ranges vary between years and throughout a season, presumably as a result of variation in quantity and quality of food resources. Harris and Leitner (2004) studied home ranges and movements of 32 adult female and 16 adult male Mohave ground squirrels with radio-telemetry on the Coso Range in 1990 and 1994-1997. For adult females, home ranges were largest in a year of extreme drought (1990) and during two years when rainfall was ample enough to support reproduction. During a severe drought in 1990, individual movements between 200-400 m a day were recorded by Leitner and Leitner (1998). Harris and Leitner (2004) suggest that the extreme drought necessitated larger movements in order to find scarcer food resources. In the productive years, greater overall resources were necessary to support reproduction, also increasing the size of the home range. In years of moderate drought and no reproduction, the Mohave ground squirrels appeared to gather enough resources in a smaller area to support early aestivation.

Leitner et al. (1991) determined that the mean home range of 12 radio equipped Mohave ground squirrels was 1.9 ha (4.7 acres), calculated using the minimum convex polygon (MCP) method. However, the burrows in which individual squirrels spent the night often

were 183 – 366 (200-400 yards) from the areas where they foraged during the day. Harris and Leitner (2004) report home range sizes separately by sex and for the mating and postmating season. Postmating home ranges of females ranged from 0.29-1.9 ha (median value, MCP method) with an average of 1.2 ha (Harris and Leitner 1999), while those for males ranged from 0.38 to 2.96 ha (J. Harris, personal communication) and averaged 1.24 ha (Harris and Leitner 1999). During the 1997 mating season, (mid-February to mid-March), the median MCP home range for males was 6.73 ha while that for females was much smaller at 0.74 ha (Harris and Leitner 2004).

The maximum distance moved within-days, as reported by Harris and Leitner (2004), was greater for males during the mating season (median 391 m, range 274 - 1,491 m) than during the postmating season (median 130 m, range 46-427 m). The same figure for females did not differ between the mating (median 138 m, range 96-213 m) and postmating seasons (median 205 m, range 24-371). The maximum within-days distance moved was significantly greater for males than females only during the mating season. Additionally, Harris and Leitner (2004) report that 40.2% of male squirrel within-days movements were greater than 200 m during the mating season. This is significantly more (p<0.05) than that for the postmating season (13.8%). Females hardly ever moved greater than 200 m within a day. This occurred 1.5% of the time in the mating season and 6.1% of the time in the postmating season, although the difference was not significant. Overall, the percentage of within-day movements greater than 200 m was significantly greater for males than females only during the mating season (p<0.001). Female home ranges may be separated by a distance greater than the diameter of their typical home range (Harris and Leitner 2004), thus necessitating larger male movements during the mating season in order to maximize the number of mating opportunities.

Individuals may maintain several home burrows that are used at night, as well as accessory burrows that are used for temperature regulation and predator avoidance. The aestivation burrow is dug specifically for use during the summer and winter period of dormancy (Best 1995). Burrows are often constructed beneath large shrubs (Leitner et al 1995).

Mohave ground squirrels exhibit male-biased natal dispersal with many males moving at least one km from their home burrows (max 6.2 km) while most females settle within 200-300 m (Leitner and Leitner 1998; Harris and Leitner 2005). Natal dispersal begins with exploratory movements of several hundred meters during the day, with the squirrel returning to the natal burrow at night (Brylski et al. 1994, Leitner and Leitner 1998). Aardahl and Roush (1985) also noted that juveniles had larger home ranges than adults, although their work was not designed to estimate home range. Adult females appear to display strong site fidelity. Leitner and Harris (2004) found that all females located in multiple years demonstrated some amount of overlap with their previous year's home range (mean 41% +/-16%) and four females demonstrated complete overlap.

C. Food Habits

Recht (1977) characterized the Mohave ground squirrel as a facultative specialist, concentrating for short periods of time on particular food sources, but changing from one

source to another throughout the active season. He believed that squirrels sampled various foods periodically in order to recognize better forage, and that the two properties that caused them to select a particular plant species over others available at a given time were higher water content and greater abundance. Leitner and Leitner (1989) found great variation among individual squirrels, even on the same study site, suggesting that individuals may concentrate on their own preferred foods. These observations are not mutually exclusive, of course, and the general finding is that the Mohave ground squirrel is quite flexible in exploiting high quality food resources (Leitner and Leitner 1992). In their syntheses of nearly a decade of data from the Coso Range, Leitner and Leitner (1998) confirm that these squirrels continuously sample available foods, but only concentrate on one or two items at a time.

Summarizing the information on the kinds of food eaten by the Mohave ground squirrel, Gustafson (1993) listed the following: leaves of forbs, shrubs, and grasses; fruits and flowers of forbs; seeds of forbs, grasses, shrubs, and Joshua trees; fungi; and arthropods. Leitner and Leitner (1992) noted that the larvae of several species of Lepidoptera were present in exceptional numbers in the spring of 1991 and that the squirrels selected them even though the leaves and seeds of forbs also were abundant. More generally, Leitner and Leitner (1998) conclude that Mohave ground squirrels exploit intermittently available food sources. Of particular importance to the Mojave ground squirrel diet are annual forbs, insufficient production of which in poor rainfall years may lead to reproductive failure (Leitner and Leitner 1990).

In their 1998 study, which summarized data collected from 1988-1996 at the Coso Range, Leitner and Leitner found that forbs comprised approximately 42% of the Mohave ground squirrel diet. Shrub material, especially foliage, made up about 45% (of all fecal samples, which included early, middle, and late active season during both wet and dry years) and is critical both early and late in the active season (when forbs are not available or are dried out) and in drought years when it may be the only food source available. The leaves of three shrubs (winterfat, Krascheninnikovia lanata; spiny hopsage, Gravia spinosa; and saltbush, Atriplex sp.) made up 60% of the Mohave ground squirrel shrub diet (i.e., 24% of their overall diet), indicating that these three species are the mainstay food for Mohave ground squirrel when forbs are not available (early and late in the season and in drought years). Based on these data, Leitner (personal communication) maintains that winterfat and spiny hopsage are habitat elements essential for sustaining Mohave ground squirrel populations when winter rainfall and annual plant production limit or preclude Mohave ground squirrel reproduction and dispersal into unoccupied or underutilized habitats. Leitner (personal communication) further hypothesizes that large areas of creosote bush habitat within the Mohave ground squirrel range lacking significant amounts of these two shrubs are not optimal habitat. Evidence supporting these hypotheses is derived from data on 40 individual Mohave ground squirrels captured in field studies in 2002. Thirty-nine Mohave ground squirrels were captured at 10 grids (sampling arrays) with combined winterfat and spiny hopsage densities equal to or greater than 300 per hectare, while only one was trapped at four grids where densities of the two shrubs were less than 300 per hectare (Leitner, unpublished data referenced in Leitner 2004). Additionally, the John Harris notes that differences in Mohave ground squirrel abundance and persistence through drought at the four Coso sites are related to the density of shrubs (J. Harris, personal communication). At Coso site 1, there is very little winterfat or spiny hopsage. At that site, adult numbers are the lowest of all four sites and there have been years when the species disappeared. At site 2 (Coso Basin), adult captures have been concentrated in the corner of the grid that has a high density of winterfat and spiny hopsage. The site with the highest density of these shrubs, site 3 (Cactus Peak) has had the highest density of squirrels over the length of the study.

Importantly, the Leitner and Leitner 1998 study documented a dietary overlap between livestock and the Mohave ground squirrel for winterfat, a plant that is relatively uncommon. The cattle diet consisted of 24% winterfat and 13% saltbush. The domestic sheep diet was comprised primarily of forbs and grasses (83%) in a wet year (1995) and 50% winterfat in a dry year (1996).

D. Seasonal and Daily Activity

The activity season of the Mohave ground squirrel is very short (Bartholomew and Hudson 1960; Tomich 1982). Adults generally are active for only about five months a year (usually February to July), during which time they reproduce, forage, and prepare for about six months of inactivity (usually August through January). During the inactive season, the squirrels are secluded in their burrows and exist in a state of torpor for much of the time. The reduced metabolic rate of the torpid squirrels conserves energy and water, permitting them to be maintained on their stores of body fat. The summer period of inactivity is specifically called aestivation and the winter period is called hibernation. This behavior appears designed to avoid that part of the year when food is scarce and temperatures may be extreme.

The length of the activity season for individual Mohave ground squirrels varies depending on age, sex, and the availability of food resources. Aestivation generally begins between July and September in reproductive years, but may start as early as April or May in non-reproductive years (Leitner, et al. 1995). Generally, Mohave ground squirrels emerge from hibernation with low body weights and fatten substantially during the active period (Leitner and Leitner 1998). In a poor food year, it takes longer for an individual to acquire the amount of fat necessary to carry it through the long period of inactivity. Adults tend to enter aestivation earlier than juveniles because they do not have to put energy into growing before beginning to store fat, and they usually have home ranges with better food resources (Recht 1977). Juveniles may remain active as late as August or September (Recht cf. Gustafson 1993). Males tend to enter aestivation earlier than females because they typically emerge from hibernation earlier (Recht cf. Gustafson 1993) and do not have to put energy into milk production and the feeding of young before they begin to store fat (Leitner and Leitner 1992). Males also typically emerge up to two weeks prior to females (Best, 1995).

During the early part of the active season, Mohave ground squirrels are above ground throughout the day (Recht 1977). However, as temperatures increase later in the spring, the squirrels spend more and more time in the shade of shrubs and sometimes retreat briefly to burrows. This behavior reduces their heat load from the sun's radiation. To dissipate excess body heat, a squirrel often will dig a shallow depression in a shady spot and lay prone in it for a short time, allowing heat to be conducted efficiently from its body into the soil.

Conversely, when ambient temperatures are cool, a squirrel may bask in the sun to warm its body. The rate of warming probably is increased by erection of the body hairs on the side facing the sun, which exposes the darkly pigmented skin.

E. Social Behavior

Recht (cf. Gustafson 1993) found that males tended to be territorial during the mating period. Females entered the territory of a given male one at a time and remained for a day or two, apparently copulating in the male's burrow. Thereafter, the females established their own home ranges. In contrast, Harris (personal communication) has evidence that males stake out the hibernation sites of females so that they can mate with them when they emerge. After weaning, juveniles in Recht's (1977) study established home ranges that were larger and of poorer quality than those of adults. Adults kept juveniles out of their home ranges by antagonistic behavior. Juvenile home ranges were clustered around those of adults, and when the adults entered aestivation, the juveniles took over the adults' home ranges.

Although usually not defending a territory in the strict sense, both juvenile and adult Mohave ground squirrels tend to be solitary with little overlap of their home ranges. This probably is the result of each squirrel maintaining a spatiotemporal territory about 2 m in diameter, the invasion of which by a conspecific triggers fighting (Recht cf. Gustafson 1993). The extreme intraspecific aggression demonstrated in Adest's (1972) laboratory studies is consistent with such an interpretation. However, Harris and Leitner (2004) found considerable overlap in male home ranges during the mating season, though they do seem to stay away from each other on a smaller scale.

F. Reproduction

Mohave ground squirrels mate soon after emergence from hibernation (Burt 1936; Leitner et al. 1991; Recht cf. Gustafson 1993) from mid-February to mid-March (Harris and Leitner 2004). Gestation lasts 29-30 days and litter size is between four and nine (Best 1995). Lactation continues through mid-May (Pengelley 1966) and juveniles most likely emerge from natal burrows within three to six weeks. Mortality is high during the first year (Brylski et al. 1994) and apparently skewed towards males, resulting in a high adult female to male ratio (between 7:1 and 1.3:1 in Leitner and Leitner 1998). Females will breed at one year of age if environmental conditions are favorable, while males sometimes do not mate until two years of age (Leitner and Leitner 1998).

Mohave ground squirrel reproductive success is dependent on the amount of fall and winter rainfall. A positive correlation between fall and winter precipitation and recruitment of juveniles the following year exists (Leitner and Leitner 1998). Following low rainfall (less than 65 mm) winters, annual herbaceous plants are not readily available, and the species may forego breeding entirely (Leitner and Leitner 1998). Harris and Leitner (2004) found that timing of rainfall is also important as reproduction did not occur in years with less than 30 mm of winter precipitation by the end of January. Due to the small geographic range of the species, a low rainfall year could result in reproductive failure throughout the Mohave ground squirrel range (Harris, personal communication). Indeed, in the spring of 1994,

following a winter with low rainfall, there was no evidence of Mohave ground squirrel reproduction recorded at a number of survey sites throughout the northern and central portions of the species' range (Leitner, personal communication). This indicates that range-wide, synchronized reproductive failure occurs periodically. Although this is a natural phenomenon, it increases the vulnerability of the species to the effects of anthropogenic habitat loss, fragmentation, and degradation.

The evidence that extended periods of abnormally low winter precipitation apparently cause high rates of Mohave ground squirrel mortality in most areas within its range unless sufficient key shrub species are available in core areas has important implications for Mohave ground squirrel conservation. The result is that habitat loss in core areas and activities that sever dispersal and/ or movement corridors between these core areas will impede and potentially prohibit conservation.

G. Interaction of Mohave and Antelope Ground Squirrels

The geographic range of the Mohave ground squirrel is overlapped completely by the range of the white-tailed antelope ground squirrel (*Ammospermophilus leucurus*). While these species are roughly similar in size (the Mohave is somewhat larger) and food habits, there apparently is little competition between them. Leitner and Leitner (1989) found that they differ in the relative proportions of foliage and seeds eaten. The predominant food of the Mohave ground squirrel was the foliage of forbs and shrubs, with seeds of forbs and shrubs the next most important food category. The opposite was true for the antelope ground squirrel, with seeds being predominant, forb foliage of lesser importance, and insects making up about 25% of their diet.

Mohave and antelope ground squirrels also differ in other aspects of their biology. For example, while the Mohave ground squirrel is solitary, the antelope ground squirrel is colonial (Bartholomew and Hudson 1960). In encounters between individuals of the two species, the Mohave ground squirrel is dominant and displaces the antelope squirrel (Adest 1972, Zembal et al. 1979). Finally, by virtue of its ability to utilize seeds, a food resource that remains available long after it has been produced (Leitner and Leitner 1990), the antelope ground squirrel remains active all year long instead of aestivating and hibernating like the Mohave ground squirrel (Bartholomew and Hudson 1960).

H. Predators

There is little documentation of the Mohave ground squirrel's natural predators. Leitner et al. (1991) found circumstantial evidence of predation by the prairie falcon and coyote. Recht (see Stewart 1993) found similar evidence of predation by the Mohave rattlesnake. Leitner (2005b), has seen high numbers of ravens in Mohave ground squirrel habitat. Raven populations have increased over 1000% in the California desert throughout the past 30 years (Boarman 2002) and are known to prey on small mammals. John Harris (personal communication) has found empty Mohave ground squirrel radio-collars (sometimes with blood and hair present) on or under Joshua trees on several occasions. Ravens were commonly seen perching and nesting on Joshua trees at these sites. Harris further notes

(personal communication) that juvenile Mohave ground squirrels could be particularly vulnerable to raven predation. Other likely predators include the red-tailed hawk, badger, kit fox, bobcat, and gopher snake.

V. POPULATION STATUS AND TREND

Behavioral and demographic characteristics of the Mohave ground squirrel's biology make it difficult to determine the exact population status of this species. Annual variation in the period of surface activity, sensitivity of population size to rainfall, and a discontinuous distribution (Gustafson 1993) all challenge the ability to accurately estimate the overall population size. Nevertheless, recent review of trapping success and monitoring data reveals that this species is in decline.

Brooks and Matchett (2002) summarized information from all known Mohave ground squirrel trapping studies from 1918 to 2001 (19 in total). After combining clustered sites, they analyzed 178 raw data points which were pooled after determining no statistical bias from such pooling. Trends in trapping success were evaluated using Spearman rank-order correlations. They conclude that "[t]here was an especially strong decline in trapping success from 1980 through 2000 (rs = -0.60, n =29)" across most of the Mohave ground squirrel range. Further, "the recent decline in trapping success does not seem to have been associated with systematic changes in the trapping methods." This decline was not correlated with winter rainfall which generally increased between 1984 and 1998 (Brooks and Matchett 2002).

As mentioned in the above discussion on Mohave ground squirrel distribution, there exists evidence that Mohave ground squirrels are now virtually absent from much of the historic range south of State Highway 58. A recent field study by Dr. Leitner (2004) found no Mohave ground squirrels at six trapping grids between US Highway 395 and the Mojave River in the southern portion of its range. He also states that very few previous records exist in this region and that no occurrences have been documented during the past 10 years. This absence may be related to poor forage availability. Leitner (2004) reported that spiny hopsage was present at only three of six grids, and only at very low densities (</= to 24/ha). Winterfat was detected on five of the grids, but was only present at densities greater than 100/ha on two. As mentioned in the food habits section above, 2002 surveys throughout the Mohave ground squirrel range indicate that combined densities of winterfat and spiny hopsage greater than 250 – 300 per ha are associated with occupancy of Mohave ground squirrels. Results from available Mohave ground squirrel surveys between 2002 and 2005 (Leitner 2005b) are mapped in Figure 3 and demonstrate the apparent absence throughout much of the Mohave ground squirrel range south of State Highway 58.

The Coso Range within the China Lake Naval Air Weapons Station (NAWS) has been one of the most consistently surveyed Mohave ground squirrel locations over the past thirty years. Figure 4 shows the number of adult Mohave ground squirrel captures at two trapping sites in the Coso Range between 1990 and 2005 as presented by Dr. Leitner at the 2005 Mohave ground squirrel Technical Advisory Committee meeting (Leitner 2005a). While data from all years are not available, the annual fluctuation in number of individuals captured is quite

apparent. It is important to note that no reproduction occurred at either site in 1990 or in 1994, presumably due to low rainfall. Local rainfall variation could explain the differences seen between sites 2 and 3 (Leitner 2005a). Of critical importance is the apparent drop in number of Mohave ground squirrels from the 1993-1996 period to the 2001-2005 period.

Throughout the historic range of the Mohave ground squirrel, there are very few areas where thriving populations can be found. P. Leitner's extensive research has identified only four such core areas. These are: 1) a small area on the east side of Edwards Air Force Base, 2) the east-central portion of Kern County in and around Freeman Gulch and near the Jawbone-Butterbredt Area of Critical Environmental Concern, 3) the Coso Range within the China Lake Naval Air Weapons Station and adjacent areas to the northwest, and 4) north of Barstow from Coolgarde Mesa toward Superior Valley on a 3,000 ft. elevation plateau, stretching north across the Goldstone Deep Space Tracking Station onto the Mojave B Range of China Lake Naval Air Weapons Station (Figure 5; Leitner 2005b). In 2002, Leitner successfully trapped Mohave ground squirrel on all four grids in this Superior Valley/ Coolgardie Mesa region. Outside of these regions, populations of Mohave ground squirrel north of State Highway 58 are scattered, fragmented, or unknown. There are recent scattered records in the Desert Tortoise Research Natural Area, Pilot Knob, Cuddeback Lake, at the site of the Hyundai automotive test track in California City, and at the translocation site for the Hyundai project (M. Connor, personal communication) which is located south of the Randsburg-Mojave Road and directly west of the California Department of Fish and Game West Mojave Desert Ecological Reserve. Dr. Leitner has summarized and mapped the current status of the Mohave ground squirrel throughout its range according to the best available data (Figure 5). Figure 5 indicates the four identified core populations, other habitat that may potentially sustain Mohave ground squirrels, the area of "virtual absence" south of State Highway 58, and habitat that may be unsuitable or a potential barrier. The status categories are based on results of a six-grid trapping array as follows:

"virtually absent" category =	0 captures on 0 grids
"present, low density" =	4-6 captures on 2-3 grids
"core area" =	18-20 captures on 5-6 grids

Please note that the colored areas on Figure 5 are meant to be approximate and do not represent hard boundaries or even necessarily proportional areas inhabited by Mohave ground squirrels. For example, please remember that, as noted above, the population on Edwards Air Force Base exists in a very small area (ca. 15 x 20 m), making its long-term sustainability questionable.

Currently the Mohave ground squirrel is listed as "vulnerable" by the World Conservation Union (IUCN VU B1+3d; IUCN 2003). This specific vulnerable designation is used for species with a geographic range that is estimated to be less than 20,000 km², and estimates indicating at least two of the following: 1) severely fragmented or known to exist in no more than ten locations; 2) continuing decline, observed, or inferred, or projected in any of the following: extent of occurrence; area of occupancy; area, extent and/or quality of habitat; number of locations or subpopulations; number of mature individuals; and 3) extreme fluctuations in any of the following: extent of occurrence; area of occupancy; number of

location or subpopulations; number of mature individuals. There is no legal protection provided by this IUCN status.

VI. APPLICABILITY OF LISTING FACTORS

Section 4(a)(1) of the Endangered Species Act (16 U.S.C. 1531 et seq.) and regulations (50 CFR part 424) promulgated to implement the listing provisions of the Act set forth general listing criteria. If a species' existence is imperiled by one or more of the following five factors, it must be listed as "threatened" or "endangered."

Overall, the data presented below clearly demonstrates that the Mohave ground squirrel warrants listing under the Federal Endangered Species Act. Due to extreme sensitivity to habitat fragmentation, the species is gone from over 20% of its range and the remainder of the range is under intense pressure. Current regulatory mechanisms are insufficient to protect Mohave ground squirrels in their remaining habitat or to protect that habitat from fragmentation, degradation, or loss caused by multiple land uses.

Defenders of Wildlife and GreenInfo conducted a GIS analysis of the land-use status of habitat within the range of the Mohave ground squirrel in 2004. The results are summarized in Figures 6-9 and Tables 1 and 2. The maps were created by compiling data from the Bureau of Land Management (BLM), the California Legacy Project 2003, CalVeg (USFS) 2000, Caltrans 2002, National Hydrology Dataset (USGS) 2001, California Division of Land Resource Protection's Farmland Mapping and Monitoring Program (FMMP) 2002, and GreenInfo 2004. Each layer was then clipped to the extent of the Mojave Ground Squirrel range. Acreages were calculated for each of the data layers. In order to determine the "remaining habitat" reported in Table 1, several layers were merged together in order to create one continuous coverage. The layers that were merged together included: curtailment, DOD lands, urban areas from CALVEG and BLM, rural development, agriculture, a 400 meter buffered zone from the center point of the major highways (US 395, SR 58, and SR 14), a 3 meter buffered zone from the center point of designated ORV routes, the Fort Irwin Expansion and BLM Grazing Allotments. Figure 6 indicates the predominant land uses throughout the Mohave ground squirrel range. Figure 7 documents the various threats facing the Mohave ground squirrel. Figure 8 shows the cumulative "disturbed habitat" and "remaining habitat" layers. The values presented in the discussions below are taken from this GIS analysis. In total, this mapping reveals that cumulatively only 9% of the range of the Mohave ground squirrel is in a protected and intact state.

A. Present or threatened destruction, modification, or curtailment of habitat or range

i. Curtailment of Range

The persistence of the Mohave ground squirrel is inherently threatened due to its relatively small range (WEMO HCP, Appendix MGS-3). As detailed above under "distribution," the

Mohave ground squirrel appears to be absent from a large percentage of this historic range. Except for the existing population in the eastern portion of Edward's Air Force Base, the species has been absent from almost all surveys conducted south of State Highway 58 for the past 10 years (Leitner 2004). Our GIS analysis calculated the extent of this curtailed area as over 400,000 ha (over 1 million acres), which amounts to over 20% of the species' range.

ii. Habitat Destruction

Throughout the remaining portion of its range, Mohave ground squirrel habitat incurs present and threatened destruction due to urban and rural development, agricultural practices, military operations, energy production, and transportation infrastructure.

Urban and Rural Development

Large scale habitat destruction occurs in urban areas with the development of subdivisions, shopping malls, golf courses, aircraft runways, landfills, sewage disposal facilities, prisons, dikes and levees, etc. The greatest losses to urbanization have been in and adjacent to the cities of Palmdale/Lancaster, Victorville/Adelanto/Hesperia/Apple Valley, and Ridgecrest. Smaller areas of urbanization include the towns of Kramer Junction, Boron, North Edwards, California City, Mojave, Rosamond, Inyokern, and Little Rock. Additional urbanization has occurred at the headquarters and outlying areas of the three major military bases: Edwards Air Force Base, the National Training Center and Fort Irwin, and China Lake Naval Air Weapons Station. Gustafson (1993) notes that while no single development threatens the existence of Mohave ground squirrel in a region unless it destroys the last population, "the total impact of all large developments, combined with the impact of smaller developments, can result in the regional extirpation of the species." Gustafson goes on to hypothesize that this is what occurred in the western triangle of Antelope Valley, to the west of SR-14, and in the area east of Victorville.

Since the 1993 analysis of Mohave ground squirrel range, cities within the Mohave ground squirrel range (Adelanto, Apple Valley, California City, Hesperia, Lancaster, Palmdale, Ridgecrest, and Victorville) grew by an average of 38.8% between 1990 and 2000 (calculated from WEMO HCP, Table 3-38, which cites Alfred Gobar Associates; U.S. Bureau of the Census; AnySite Online). Our GIS analysis indicates that urban development now accounts for over 44,000 ha (108,000 acres) and rural development spans over 11,000 ha (28,000 acres). In total, these lands in a developed state account for 2.8% of the Mohave ground squirrel range.

The current version of the West Mojave Plan HCP and California Desert Conservation Area Plan Amendment ("WEMO Plan") allows development throughout one-third of the Mohave Ground Squirrel range. WEMO justifies this by conserving 35% of the range in a Mohave ground squirrel Conservation Area. Within the Mohave ground squirrel Conservation Area itself, 6,975 ha (17,235 acres) of habitat would be allowed to be taken. The mitigation provided under WEMO is 5:1 for lands within the Conservation Area. Importantly, the West Mojave Plan does not protect known Mohave ground squirrel core habitat areas from future development and some of these core areas are currently impacted by livestock grazing and

other uses. Outside of identified conservation areas, the mitigation ratio is either 1:1 or 0.5:1 depending on the designated quality of the habitat for the desert tortoise. Current observations indicate that desert tortoise habitat quality does not necessarily equate with Mohave ground squirrel habitat quality (P. Leitner, personal communication). There are extensive areas within Mohave ground squirrel range that appear to support good desert tortoise populations but are absent of Mohave ground squirrels. Additionally, current mitigation for Mohave ground squirrel impacts has been much higher than this 1:1 ratio (generally between 3:1 and 5:1 with the lowest recorded ratio of 2.3:1 for the Hyundai HCP). Unlike current permits, the WEMO mitigation does not include additional enhancement and endowment funds, thus decreasing the conservation value of the mitigation considerably.

Agricultural Development

Hoyt (1972) noted that agricultural fields had been established in former habitat of the Mohave ground squirrel and Aardahl and Roush (1985) state that urban and agricultural development has resulted in "[s]ignificant loss of habitat" for the species. One hundred and fifty-eight square kilometers (61 square miles) of Mohave ground squirrel habitat had been lost to agriculture by the early 1990s (Gustafson 1993). No updated data are available to quantify the extent or intensity of this threat at the present time. The WEMO HCP (Appendix M) reports that about 4% of the historic Mohave ground squirrel occurrences are found in agricultural areas. Our GIS estimate calculated over 37,000 ha (92,000 acres) of current Mohave ground squirrel habitat - equal to 1.9% of the total – in agriculture.

Military Operations

Tanks and other military vehicles have impacts similar to, and perhaps more intense than, the impacts of off-highway vehicles on the Mohave ground squirrel. As detailed below, Bury et al. (1977) found these direct and indirect impacts (including running over individual animals, collapsing their burrows, destruction of shrubs, disturbance of soils, and reduction in the number of spring annuals) to be detrimental to wildlife and Creosote Scrub habitat in the Mojave Desert. Current training at Fort Irwin encompasses about 146,000 ha (360,500 acres) of Mohave ground squirrel habitat (Table 2). This amounts to 7.4% of the total range. Krzysik (1991) noted heavy shrub losses and disturbance to this habitat due to military operations at Fort Irwin.

The recently approved expansion of Fort Irwin affects over 30,500 ha (75,300 acres; Table 1) within the Mohave ground squirrel range and represents a significant loss of Mohave ground squirrel habitat (1.5%). California Department of Fish and Game biologists term this as "probably excellent habitat" for Mohave ground squirrels (CDFG 2004) and P. Leitner describes it as being in the "middle of prime Mohave ground squirrel habitat (personal communication)." Further, the same CDFG biologists conclude that "[t]he potential expansion likely represents the single largest threat to the viability of the [Mohave ground] squirrel (CDFG 2004)." At a January 7, 2004 Mohave Ground Squirrel Technical Advisory Group ("TAG," headed by the California Department of Fish and Game) there was broad acknowledgement amongst the TAG participants that this expansion would jeopardize the existence of the Mohave ground squirrel.

In addition to impacting up to 30,000 ha of prime Mohave ground squirrel habitat, the expansion of military training on Fort Irwin would fragment one of only four known thriving populations of the species. Eventually this region will represent a dispersal barrier between the remaining habitat to the north on the Goldstone Tracking Station and in the Mojave B range of China Lake Naval Air Weapons Station and that at Coolgardie Mesa to the south. The California Department of Fish and Game acknowledged this habitat fragmentation concern in their comments on the West Mojave HCP (DFG comment letter dated December, 22, 2003): "the [Fort Irwin expansion] isolates the relatively-intact Goldstone area, at which there is evidence of good squirrel populations." Because Mohave ground squirrels rely on continuous habitat to survive low rainfall years, even that habitat not directly destroyed by the expansion will be less capable of sustaining Mohave ground squirrels.

The Supplemental Draft Environmental Impact Statement (SDEIS) for the Fort Irwin expansion indicates that the impacts of this project on the Mohave ground squirrel are significant (Charis 2004, p. 4-21). Unfortunately, there is no mitigation targeted at reducing the significant impact to the Mohave ground squirrel. The Biological Assessment concludes that this is "[b]ecause the Mojave ground squirrel is not listed federally (Charis 2003, p. 4-39)." Instead, the SDEIS document claims that "[c]reation of conservation areas and purchase of mitigation lands for desert tortoise and Lane Mountain milk-vetch will also benefit the Mojave ground squirrel, where the ranges overlap (Charis 2004, p. 4-26)." As the compensation lands have not been identified, it is impossible to quantify or rely on the fact that the amount of overlap between the compensation lands and the Mohave ground squirrel will be sufficient. Further, recent Mohave ground squirrel monitoring indicates that much of the Desert Wildlife Management Areas (DWMAs) where desert tortoise compensation lands will be directed do not have Mohave ground squirrel populations (P. Leitner, personal communication). This lack of overlap is particularly apparent in the Ord-Rodman DWMA, the entirety of which is southeast of Barstow and outside the known Mohave ground squirrel range.

Energy Production

Leitner (1980) discusses the impacts of geothermal energy production, remarking that "it will be very difficult to carry out geothermal exploration and development activities [in the Coso Geothermal Study Area] without causing some adverse impacts [to Mohave Ground Squirrels]." According to Leitner and Leitner (1989), the production of geothermal resources at the Coso Known Geothermal Resource Area (KGRA) resulted in the loss of up to 405 hectares (1,000 acres) of desert scrub habitat. The areas with the highest geothermal development potential also supported populations of Mohave ground squirrel (Leitner 1980). In addition to geothermal development, there also exist solar energy development plants within the range of the Mohave ground squirrel. Although the associated acreages and impacts have not been quantified, one can assume such development may degrade the functional value of Mohave ground squirrel habitat.

Transportation

An extensive network of roads and highways lies within the range of the Mohave ground squirrel and they are known to be run over by vehicles (Gustafson 1993). Paved routes themselves render habitat completely unusable by the Mohave ground squirrel for burrowing or forage production. Extensive vehicular routes may also pose a behavioral barrier to some movement, thus further fragmenting otherwise quality Mohave ground squirrel habitat. Although radio-collared Mohave ground squirrels have readily traversed 4-lane divided highways, these crossing are made at considerable mortality risk (Leitner, personal communication). A 1998 survey reported in the Western Mojave Desert Off-Road Vehicle Designation Project Environmental Assessment and Draft CDCA Plan Amendment ("WEMO Route Designation") described the number and types of human disturbances along 310 transects throughout the range of the Mohave ground squirrel. Thirty-seven percent of these transects were bisected by roads. Currently, camping is allowed up to 91.5 m (300 feet) from existing roads on all BLM lands. Additionally, there is evidence of disturbance to vegetation along roadsides up to 400 m out. Thus, the impact zone reaches beyond the roadbed itself.

In our GIS threats analysis, we buffered the major highways within the range of the Mohave ground squirrel (SR 14, SR 58, and US 395) by 400 m from the center line to account for the road impact zone. This is based on the minimum level of road effects determined for the desert tortoise in the Mojave Desert (Hoff and Marlow 2002) and consultation with experts in the field (Mohave Ground Squirrel Technical Advisory Group). In fact, Hoff and Marlow (2002) found road impacts to desert tortoises more than 4,000 m from the highest traffic level road that they studied. Therefore, our 400 m estimate is highly conservative. The results of our analysis show that this calculated threat of highways affects over 66,000 ha (163,000 acres) of Mohave ground squirrel habitat, equal to 3.3% of the species range.

iii. Habitat Degradation

Off-highway vehicle (OHV) use, grazing by sheep and cattle, drought, habitat fragmentation, domestic animal predation, and rodenticides all degrade the quality of Mohave ground squirrel habitat.

Off-highway vehicle use

Bury et al. (1977) studied the effects of off-highway vehicles on terrestrial vertebrates in the Western Mojave Desert at four sites south of Barstow. Direct effects include running over individual animals, collapsing their burrows, and breaking shrubs which provide cover. LaRue (WEMO Route Designation, p. 30) crushed a juvenile male Mohave ground squirrel on a dirt road as it attempted to cross in front of his truck near Water Valley. Direct mortality by OHVs is likely to affect male juvenile Mohave ground squirrel disproportionately because they are more likely to travel longer distances during natal dispersal than adults or female juveniles. Indirect effects, deemed more significant, include disturbance of soils and destruction of shrubs, both of which combine to reduce the number of spring annuals. Bury et al. (1977) concluded that off-highway vehicles detrimentally affect wildlife and Creosote Bush Scrub habitat in the Mojave Desert. Brooks (1999a, 2000

from WEMO Route designation) found roads serve as dispersal corridors for non-native species and that non-native species are more common along roadsides. The displacement of native species on which Mohave ground squirrel persistence depends greatly reduces the habitat quality surrounding both paved and dirt roads and routes.

The WEMO Route Designation report of the 1998 vegetation studies indicates that 47% of the 310 transects studied were bisected by some type of OHV track. Within the Mohave ground squirrel range, there exist four authorized off-highway areas operated by the BLM (Jawbone Canyon, Dove Springs, El Mirage, and Spangler Hills), constituting over 417 square kilometers (161 mi²). The WEMO Route Designation reports the number of square miles of trials and tracks in the Spangler, El Mirage, Jawbone/Dove, and California City/Rands OHV access areas. Cumulatively these areas contain 710 km² (274 mi²) affected by above average trails, and 840 km^2 (324 mi²) impacted by tracks. If El Mirage is subtracted, because it falls in the portion of the range that is apparently unoccupied, this leaves an impact area of 661 km² (255 mi²) for above average trails and 790 km² (305 mi²) for tracks. In addition to the direct impacts, the indirect impacts, including those of habitat fragmentation, render this habitat severely degraded for Mohave ground squirrels. It appears that Mohave ground squirrels may occur and disperse through some open areas, but not others. The reasons for this are unknown. However, it is important to note that, while there is some evidence that Mohave ground squirrels are known to occur and/or move through Dove Springs Open Area, the same is not true for Spangler Hills (P. Leitner, unpublished data). It would appear that this is related to the location of Mohave ground squirrel core populations and the limits of dispersal, especially as these factors relate to rainfall patterns and habitat availability.

The WEMO Route Designation states that data support a "spill-over" effect from open areas, with higher incidences of vehicle impacts in adjacent areas than non-adjacent areas. The document specifically admits that "areas adjacent to Jawbone and Spangler Hills [,] remain susceptible to open area-related impacts" (p. 32). The document goes on to say that vehicle impacts may also be prevalent in areas not adjacent to open areas. Within the proposed Mohave ground squirrel Conservation Area, this includes "lands within the Rand Mountains, west of Silver Lakes, within Kramer Hills, north of Hinkley, and southwest of Fort Irwin." East and northeast of Fremont Peak, Fremont Valley, Iron Mountains north of Silver Lakes, Superior Valley (one 10.4 km² region), and southeast of Harper Lake are also mentioned as areas with possible vehicular impacts.

In our GIS analysis, we buffered the authorized ORV use network by three meters, based on the minimum tortoise depression zone along highways edges for the desert tortoise (Boarman 2002; Nicholson 1978, Berry and Turner 1987, LaRue 1993, Boarman and Sazaki 1996, von Seckendorff Hoff and Marlow 1997, cf. Baepler et al. 1994). This is the best available estimate for road impacts to wildlife within the range of the Mohave ground squirrel. It should be noted, however, that Mohave ground squirrels have been observed to cross unpaved roads readily and high speed paved highways as well (P. Leitner, personal communication). Our results indicate that nearly 3,000 ha (7,300 acres) of additional Mohave ground squirrel habitat are impacted by legal ORV use. This figure, amounting to

0.1% of Mohave ground squirrel habitat, does not include areas where ORVs illegally trespass and destroy and degrade habitat, figures that are likely to be considerable.

Livestock Grazing

Livestock grazing has the potential to degrade Mohave ground squirrel habitat through changes in soil and vegetative structure, accelerated erosion, and collapsing of burrows (Laabs 2002). Campbell (1988) wrote that desert vegetation in the range of the desert tortoise has undergone significant changes as a result of a century or more of livestock grazing. Annual grasses, often nonnative species, have partially replaced the once dominant perennial grasses and shrubs have increased (Campbell 1988). Aardahl and Roush (1985) wrote that "grazing by sheep and cattle[,] have the potential of influencing the long-term population [viability] of the Mohave ground squirrel." Leitner and Leitner (1998) documented a dietary overlap in relatively uncommon forage between livestock and the Mohave ground squirrel. Winterfat foliage made up 24% of the cattle diet and saltbush leaf constituted 13%. In a wet year, sheep ate mainly forbs and grasses, while in a dry year winterfat was 50% of the sheep diet, even though this forage species was rare. Considering the strong relationship between habitat quality and the availability of these preferred forage species, livestock grazing significantly decreases the habitat quality for the Mohave ground squirrel.

Grazing by cattle and sheep occurs throughout the range of the Mohave ground squirrel, including Hunter Mountain, Lacey Cactus McCloud, Olancha, Walker Pass, Harper Dry Lake, Cantil Common, Spangler Hills, Lava Mountains, Monolith Cantil, Bissell, Boron, Shadow Mountains, Stoddard Mountain Middle Unit, Buckhorn Canyon, Boron, Lava Mountains, Stoddard Mountain West Unit, Tunawee, Rudnick, and Hansen. These livestock grazing allotments constitute just under $2,000 \text{ km}^2$ (771 mi²) of the Mohave ground squirrel range as calculated from CDCA Plan 1980. Additionally, grazing was allowed under the CDCA in some federally designated wilderness areas including the El Paso and Golden Valley wilderness areas. In fact, visual inspection of the WEMO Plan maps show an estimated 5,443 km² (2100 mi²) of sheep, cattle, or sheep/cattle allotments within the current Mohave ground squirrel range (excluding the area south of Highway 58) that will be available under the plan. The WEMO HCP (Appendix M) reports that a total of 6,143 km² (614,276 ha or 1,517,262 acres) of BLM sheep allotments are being actively grazed within the known range of the Mohave ground squirrel. (This includes BLM and private lands.) The WEMO Plan indicates that this figure is likely to be an underestimation because of an additional potential to graze in areas not associated with BLM allotments.

Our GIS analysis quantified BLM grazing allotments in the Mohave ground squirrel range as follows: 302,000 ha (746,000 acres) sheep grazing; 179,000 ha (443,000 acres) cattle grazing; and 52,000 ha (129,000 acres) sheep and cattle grazing. In total, this amounts to over 500,000 ha (1,300,000 acres) of Mohave ground squirrel habitat – 27% of the species' range (Table 1).

Habitat Fragmentation

Habitat fragmentation occurs when areas of habitat become separated or discontinuous by destruction or degradation of intervening habitat. Populations of animals thus become separated, and gene flow no longer occurs between individuals in the separated habitats. If habitat blocks are separated by significant distances or anthropogenic barriers, it is unlikely that Mohave ground squirrels will cross the intervening space (Gustafson 1993). This effectively lowers the population size in each separate occurrence, putting the subpopulation at risk for extirpation due to natural fluctuations in environmental conditions (Soule 1986), thus lowering the resilience of the species as a whole.

During prolonged years of low rainfall, Mohave ground squirrels fail to persist in low quality habitat and only remain viable in high quality drought refugia (Leitner and Leitner 1998). When rainfall returns to a level that can produce Mohave ground squirrel forage on lower quality habitats, the populations at the drought refugia provide a source for recolonization. Habitat fragmentation, loss and degradation between these drought refugia prevent recolonization of these temporarily unoccupied habitats, thus posing a cumulative threat to the species.

The 1993 status review of the Mohave ground squirrel (Gustafson 1993) indicates that habitat fragmentation is a cause of decline of the Mohave ground squirrel. Since 1993, there has been increased development and fragmentation throughout the range of the species, and this remains a significant threat in the future. As discussed previously, the Fort Irwin expansion will fragment one of the last remaining thriving Mohave ground squirrel populations, partially isolating the Goldstone and Mojave B Range populations. The West Mojave HCP also fails to maintain habitat connectivity through the Mohave ground squirrel Conservation Area. This plan will allow significant gaps in the habitat between the Edwards Air Force Base population and the Desert Tortoise Natural Area, within the region just south of Ridgecrest, and reinforce the barrier effect of State Highway 58.

Domestic Animal Predation

Harrison (1992) established that even well-fed house cats are notorious for their predation on small mammals and birds. Domestic dogs commonly dig up rodent burrows. The threat associated with this mortality and habitat destruction is expected to be localized near rural and urban development.

Rodenticides/ Pesticides

Poisons frequently are used around agricultural fields, golf courses, earthen dams and canal levees to control rodents. It is not known whether Mohave ground squirrel will forage in agricultural fields, but they do live in desert plant communities adjacent to planted fields (Hoyt 1972, Hafner and Yates 1983) and are therefore exposed to the effects of pesticides. Hoyt (1972) stated that because Mohave ground squirrels appear dependent on alfalfa fields in some areas they "could be easily exterminated by the State Rodent Program." In a letter included in Appendix E of Gustafson (1993), J.B. Aardahl of the BLM wrote that in fact

"[i]n the early part of this century, ground squirrels were systematically eliminated with poison grain by the Los Angeles Agricultural Commission office in the Antelope Valley."

Summary

Table 1 summarizes the results of our GIS analysis in which we calculated the total amount of habitat within the range of the Mohave ground squirrel that is in a land use category threatening to the species. Quantifications are based on the best available data for dry lake beds (unsuitable habitat), urban and rural development, agriculture, Department of Defense land, the apparent curtailment south of SR-58, authorized OHV use, the Fort Irwin Expansion, BLM grazing allotments, and paved highways. As reported in Table 2, only 9.1% of the species' range is under some form of protective land management. Even if the impacts of livestock are omitted, the species still faces the cumulative loss and severe degradation of nearly half its historic range. As discussed below, current mechanisms do not ensure that the "remaining potential habitat" – which amounts to only 21.7% of the Mohave ground squirrel range - will be protected as this habitat will be managed almost entirely through the seriously flawed West Mojave Plan (the remaining potential habitat layer is made up of 64% BLM land and 27% private land). Clearly, this is the strongest case that can be made for listing the Mohave ground squirrel as an endangered species.

B. Inadequacy of Existing Mechanisms

Current existing mechanisms have proven inadequate to conserve the Mohave ground squirrel. Our GIS analysis indicates that only 9.1% of the total range of the species is in any kind of protected status. Because nearly two-thirds of the range of the species is under federal management, the status as a threatened species under the California Endangered Species Act cannot ensure range-wide conservation. The entire range of the species falls within the boundary of the proposed West Mojave Plan HCP/ California Desert Conservation Area Plan Amendment, which purports to serve as the ultimate conservation tool for the species. Unfortunately, as we detail below, the West Mojave Plan fails to assure conservation of the species. Because of these inadequacies, the only remedy is to list it under the Federal Endangered Species Act.

i. State Laws and Regulations

The Mohave ground squirrel is listed as "threatened" under the California Endangered Species Act. Under this designation, the California Department of Fish and Game (DFG) must consult with other state agencies (under Section 2090 of the California Fish and Game Code) in order to authorize, fund, or carry out projects which may impact the species. Within the range of the Mohave ground squirrel, this applies only to scattered DFG lands including the Fremont Valley Ecological Reserve, the Hinkley Conservation Easement, the Indian Wells Valley Mitigation Lands, the West Mojave Desert Ecological Reserve, Desert Tortoise Habitat Preserve and the Mojave River Preserve (see Figure 2). Total acreage for this species' habitat in DFG ownership is minimal (just over 6,000 ha), accounting for about 0.3% of the historic range (Table 2). The State of California also owns and manages the 7,689 ha (18,993 acre) Red Rock Canyon State Park and the 1,191 ha (2,941 acre) Saddleback Butte State Park within the Mohave ground squirrel range.

Section 2080 of the California Fish and Game Code prohibits the import, export, take, possession, purchase, or sale of any species listed as threatened or endangered under the California Endangered Species Act. Section 2081 of the California Fish and Game Code does allow for authorized take by individuals, public agencies, universities, zoological gardens, and scientific or educational institutions, to import, export, take, or possess any endangered species, threatened species, or candidate species for scientific, educational or management purposes, but only under certain designated conditions. These conditions include the requirement that the authorized take should be minimized, fully mitigated, and not jeopardize the continued existence of the species. Section 2081 permits have been issued by DFG. As discussed below, the West Mojave Plan HCP would have to be implemented in tandem with a 2081 permit for the Mohave ground squirrel. If this permit were to be issued under WEMO in its current form, the Mohave ground squirrel would effectively lose a significant amount of protection on one-third of its currently described habitat (see discussion below). This is because the mitigation ratios for the species would be dictated by the location of the project impact without additional direction by DFG and not specifically tied to habitat quality for the Mohave ground squirrel.

ii. Federal status

The Mohave ground squirrel is a category 2 candidate (Federal Register: May 4, 2004 (Volume 69, Number 86, p. Page 24875-24904) and was first identified as such on September 18, 1985. Category 2 includes taxa for which sufficient information on biological vulnerability and threats is not currently available to indicate that listing as endangered or threatened is warranted.

Two-thirds (66.3% according to our GIS analysis, Table 2) of the historic range of the Mohave ground squirrel is owned by the federal government. These lands are split approximately evenly between the Bureau of Land Management (31.8%) and the Department of Defense (34.5%; Edwards Air Force Base, Fort Irwin National Training Center, and China Lake Naval Air Weapons Station), with a small amount under the management of the National Park Service (0.9%) and the U.S. Forest Service (0.1%). There is no legal federal protection for this species and the California Endangered Species Act (CESA) does not apply to federal lands. Although Edwards Air Force Base has been proactive in managing for the conservation of the Mohave ground squirrel, and military operations at China Lake NAWS do not currently present a threat to the species, the Fort Irwin expansion clearly demonstrates that the lack of federal listing presents an impediment to Mohave ground squirrel conservation on military lands. Without federal status under the Federal Endangered Species Act, there are no legal assurances that the one-third of Mohave ground squirrel habitat found on these military lands will not be destroyed by future operations. In fact, Fort Irwin explicitly states that they are not providing mitigation for the Mohave ground squirrel because it is not a federally listed species (Charis 2004). The Mohave ground squirrel is listed as a BLM species of special concern and is on their list of sensitive species. However, the Bureau of Land Management is charged with a multiple use mandate in managing its

lands under the Federal Land Policy and Management Act of 1976. Therefore, activities including grazing, OHV recreation, and mineral development are allowed throughout BLM lands. Importantly, these uses are identified as significant threats to the Mohave ground squirrel. Thus, protection for the Mohave ground squirrel is generally limited to compensation for destroyed habitat, which has not been consistently required of project proponents by the BLM. Furthermore, BLM does not require any form of compensation for MGS habitat impact resulting from permitted OHV events or livestock grazing.

BLM Wilderness Areas and the Desert Tortoise Research Natural Area ("DTNA," cooperatively managed by the BLM and the Desert Tortoise Preserve Committee) provide protection for some Mohave ground squirrel habitat. The Wilderness areas include: Black Mountain, Grass Valley, Golden Valley, El Paso, Owens Peak, and portions of the Coso Range and Death Valley. However, as stated before, El Paso and Golden Valley Wilderness areas do permit sheep grazing, so even this level of federal protection does not eliminate all threats to Mohave ground squirrel conservation. Our GIS analysis (Table 2) indicates that the DTNA is just over 10,000 ha (25,000 acres) and the cumulative area encompassed by all wilderness areas within the Mohave ground squirrel range is about 102,000 ha (253,000 acres). Together, these amount to 5.7% of Mohave ground squirrel habitat.

iii. The West Mojave HCP

The West Mojave Plan HCP and California Desert Conservation Area Plan Amendment ("WEMO") purport to be the ultimate mechanism for conservation of the Mohave ground squirrel. Unfortunately, the final draft of this plan is clearly insufficient to spare the Mohave ground squirrel from extinction.

Although the WEMO planning area encompasses the entirety of the Mohave ground squirrel historic range, WEMO establishes a Mohave ground squirrel Conservation Area that covers only 35% of this range. Within this range, 1% is allowed to be developed. An additional provision allows habitat "credits" for lands restored within the Conservation Area, thus providing the possibility for the take of Mohave ground squirrel habitat to exceed the 1% limit. Functional restoration of fragile desert habitat for Mohave ground squirrel use would take decades. Therefore, allowing additional take immediately following the initiation of restoration efforts would constitute additional take of Mohave ground squirrel habitat. Furthermore, the proposed WEMO Plan does not preclude destructive land uses within the core habitat areas of the Mohave ground squirrel which are essential for its long term survival.

Within the conservation area, the WEMO Plan further fails to include specific biological objectives and appropriate measures for conserving and providing full mitigation for impact to the Mohave ground squirrel. Areas of suitable habitat within the Conservation Area are not identified. Specifically, data are lacking to ensure that the Conservation Area itself overlaps with Mohave ground squirrel suitable habitat or actually contains Mohave ground squirrel populations. For instance, 2003 surveys of the Western Rands ACEC south to the Fremont Valley did not locate any Mohave ground squirrels although this area is designated within the Conservation Area (M. Connor, personal communication). On the other hand, the

Conservation Area does not include areas south of the Ransburg-Mojave Road although Mohave grounds squirrels have been sighted in this area (M. Connor, personal communication). As discussed previously, the tight reliance on rainfall amount and vegetation phenology for successful reproduction (Harris and Leitner 2004) demonstrates that this species exists in patches of core habitat from which it expands in optimal years. With such a small amount of the range identified as core habitat, this lack of targeted habitat conservation (specifically the lack of identified core areas in which destructive land uses are prohibited) presents a threat to the Mohave ground squirrel. Furthermore, the WEMO Plan does not require pre-construction surveys for Mohave ground squirrels, so there will be no way to track the number of Mohave ground squirrels lost or displaced by allowable habitat destruction, whether it be within or outside of the designated Conservation Area.

Additionally, the spatial configuration of the Conservation Area itself is problematic. The WEMO Plan does not identify or in any way ensure that corridors will be maintained between the core Mohave ground squirrel areas. Conspicuously absent is a reserve design strategy for Mohave ground squirrel. As a result, it is entirely possible that existing movement corridors could be severed under the guise of WEMO Plan protection. The current WEMO proposal includes six distinct areas, the bulk of which surrounds the northern, southwestern, and southeastern portions of China Lake Naval Air Weapons Station. The Conservation Area boundary largely excludes private lands. The California Department of Fish and Game (2003 WEMO comment letter) remarks that the private lands, specifically those excluded at the request of Inyo County, are necessary to "provide new connections among core populations." This indicates that the current proposed configuration of the Conservation Areas is insufficient to meet the biological needs of the Mohave ground squirrel. The Department of Fish and Game also remarked in its comments that there needs to be protected land to connect habitat at Edwards Air Force Base to that at the Desert Tortoise Research Natural Area. Records of the Mohave ground squirrel acquired during preconstruction surveys at the Hyundai test track indicate that this intervening habitat is occupied by the species. Lack of substantial overlap between the Mohave ground squirrel Conservation Area and Leitner's core areas and connecting areas (Figure 9) clearly demonstrates that the WEMO Plan fails to develop a framework for protecting this species through an adequate conservation reserve. Large portions of the core areas and the necessary connections between them are absent from the Conservation Area.

The California Department of Fish and Game has written extensive comments detailing why the WEMO Plan does not sufficiently conserve or fully mitigate for impacts to the Mohave ground squirrel (CDFG 2003). Of particular concern was the lack of connectivity, specifically within private lands around Ridgecrest, private lands and some BLM public lands located in Inyo County along Highway 395 that were withdrawn from the Mohave ground squirrel Conservation Area, and lands between the DTNA and Edwards Air Force Base. Astonishingly, the Final WEMO Plan appears to rely on OHV Open areas to provide connectivity (p. 6-223 Final WEMO Plan)!

Additionally, Kayce Bell, a master's student at Idaho State University, is currently conducting an analysis of the genetic variation within Mohave ground squirrels. Her preliminary results (presentation by K. Bell at the Mohave ground squirrel Wildlife Society

Workshop in Ridgecrest, April 2004) indicate that there is genetic divergence between the northern and southern core populations. This would suggest that connectivity is currently a conservation challenge for the Mohave ground squirrel north of Edwards Air Force Base and the Fort Irwin area.

Within the WEMO Plan Conservation Area, 6,975 ha (17,235 acres) are allowed to be taken at a 5:1 mitigation ratio. Again, there are no requirements that the compensation lands actually contain Mohave ground squirrel habitat or Mohave ground squirrel populations. The only requirement is that they are found within the boundaries of the designation Conservation Area. Outside of the Conservation Area, habitat can be taken at a mitigation ratio of 1:1 or 0.5:1, depending on the designated quality of the habitat for desert tortoise. As discussed previously, desert tortoise habitat quality does not necessarily equate with Mohave ground squirrel habitat quality. Even if the mitigation lands were found to be Mohave ground squirrel habitat, the best case scenario, 1:1 mitigation, leads to an overall loss of Mohave ground squirrel habitat. For example, if 10 acres are developed and 10 acres of mitigation lands are conserved as a result, there is a net loss of 10 out of an original 20 acres. This is an overall 50% loss, with the only demonstrable advantage to the species being that the 10 acres of mitigation habitat enjoys permanent protection.

The WEMO Plan was supposed to offset the impacts to sensitive species resulting from the Fort Irwin Expansion. Among others, these species include the desert tortoise and the Mohave ground squirrel. What the Final Plan fails to admit, however, is that an analysis of the Fort Irwin expansion, conducted by a Blue Ribbon Panel of scientists in 1999, concluded that the expansion would present a serious, adverse impact to desert tortoise recovery. The Panel concluded that if society decided to allow the Fort Irwin expansion for national security reasons, then the onus for conservation of impacted natural resources would necessarily require much stricter provisions in the remainder of the West Mojave Desert. Clearly, the WEMO Plan has not met this standard in terms of the needs of the Mohave ground squirrel.

In summary, the West Mojave Plan fails to meet the conservation needs of the Mohave ground squirrel in that it 1) only identifies 35% of the range as a proposed Conservation Area and allows for habitat destruction within the remaining range; 2) does not ensure that the 35% identified actually contains Mohave ground squirrel habitat or populations; 3) fails to provide for the spatial needs of the species; and 4) does not ensure monitoring of Mohave ground squirrel populations within or outside of the Conservation Area.

C. Over-utilization for commercial, recreational, scientific, or educational purposes

There is no known commercial or recreational utilization of this species. Scientific and educational activities associated with the Mohave ground squirrel are strictly controlled by the DFG through scientific research permits. The only applicable activity affecting Mohave ground squirrel habitat is commercial filming that is done in the Mojave Desert. This impact has not been quantified.

D. Disease or predation

Coyote populations are increasing throughout their range, including the West Mojave Desert, posing an increasing predation risk to Mohave ground squirrel populations. As stated previously, house cats are notorious for high rates of predation on small mammals and birds (Harrison 1992), greatly inflated raven populations may pose a serious threat to the Mohave ground squirrel, and domestic and feral dogs commonly dig up rodent burrows. Feral populations of both dogs and cats pose a threat to survival of individual Mohave ground squirrels. Overall, predation by ravens and domestic dogs and cats in urban expansion areas is a concern. Disease among Mohave ground squirrel populations has not been identified.

E. Other natural or anthropogenic factors

The only other natural factor having a major impact on Mohave ground squirrel populations is years of reduced rainfall. This is most often termed "drought." However, the definition of a desert includes xeric conditions, and recent analysis of the rainfall trends in the Mojave Desert (CLIMAS 2004) indicate that recent years of low rainfall are within the historical range of rainfall records. As discussed in the natural history section, reproduction, and ultimately survival, of Mohave ground squirrel populations is intimately linked to rainfall. In years of low (less than 30 mm by the end of January according to Harris and Leitner [2004]) winter rainfall, Mohave ground squirrels forgo reproduction. Leitner and Leitner (1998) found further evidence that Mohave ground squirrel populations may fail to persist in certain areas during what they term "drought episodes." Although the Mohave ground squirrel evolved in the presence of low rainfall and periods of drought, the cumulative impacts of habitat destruction and fragmentation, and the potential for an overall decrease in precipitation associated with climate change, increase the threat posed by drought episodes.

VII. LITERATURE CITED

Aardahl, J.B., and P. Rousch. 1985. Distribution, relative density, habitat preference and seasonal activity levels of the Mohave ground squirrel (*Spermophilus mohavensis*) and Antelope ground squirrel (*Ammosphermophilus leucurus*) in the western Mojave Desert, California. U.S. Bureau of Land Management report, California Desert District (Riverside, CA), 24 pp. plus appendices.

Adest, G.A. 1972. Intraspecific and interspecific behavior of *Ammospermophilus leucurus* and *Citellus mohavensis*. M.S. Thesis, California State University, Los Angeles, 84 pp.

Baepler, D.H., A. Heindl, A.K. Singh, and A. Plandley. 1994. A study of the impacts of highways on desert tortoise populations. Report to Nevada Department Transportation. Harry Reid Center for Environmental Studies, Las Vegas, NV.

Bartholomew, G.A., and J.W. Hudson. 1960. Aaestivation in the Mohave ground squirrel, *Citellus mohavesis. In* Mammalian hibernation, Bull. Mus. Compar. Zool., Volume 124.

Bell, K. 2005. Mohave Ground Squirrel: insights from genetic data. Presentation at the Mohave ground squirrel Workshop, Ridgecrest, April 2005.

Berry, K.H., and F.B. Turner. 1987. Notes on the behavior and habitat preferences of juvenile desert tortoises (*Gopherus agassizii*) in California. Proceedings of the 1984 Desert Tortoise Council Symposium 1987:111-130.

Best, T.L. 1995. Spermophilus mohavensis. Mammalian Species 509:1-7.

Boarman, W.I. 2002. Threats to desert tortoise populations: a critical review of the literature. Prepared for the West Mojave Planning Team, Bureau of Land Management. U.S. Geological Survey, Sacramento, CA.

Boarman, W.I., and M. Sazaki. 1996. Highway mortality in desert tortoises and small vertebrates: success of barrier fences and culverts. Pages 169-173 in Transportation and wildlife: reducing wildlife mortality and improving wildlife passageways across transportation corridors. G. Evink, D. Zeigler, P. Garrett, and J. Berry, editors. U.S. Department of Transportation, Federal Highway Administration, Washington, DC.

Brooks, M.L., and J.R. Matchett. 2002. Sampling methods and trapping success trends for the Mohave ground squirrel (*Spermophilus mohavensis*). California Fish and Game 88(4):165-177.

Brylski, P., J.R. Gustafson, P. Leitner and M.A. Recht. 1994. Mohave ground squirrel. *In*: C.G. Thelander, ed., Life on the edge: A guide to California's endangered natural resources. BioSystems Books. Santa Cruz, California.

Burt, W.G. 1936. Notes on the habits of the Mohave ground squirrel. Journal of Mammalogy 17(3):221-224.

Bury, R.B., R.A. Luckenbach, and S.D. Busak. 1977. Effects of off-road vehicles on vertebrates in the California desert. U.S. Fish and Wildlife Service (Washington, DC), Wildlife Resources Report 8, 20 pp. plus appendices.

California Department of Fish and Game. 2004. Comment letter on West Mojave Plan Habitat Conservation Plan and California Desert Conservation Area Plan Amendment Draft Environmental Impact Report and Statement SCH #2003011017.

Campbell, F.T. 1988. The desert tortoise. Species account (pp. 567-581) *In* W.J. Chandler, ed., Audubon Wildlife Report: 1988/1989 (National Audubon Society), Academic Press, San Diego, 817 pp.

Charis Professional Services Corporation. May 2003. Biological Assessment for the proposed addition of maneuver training land at Fort Irwin, CA. Prepared for U.S. Army National Training Center and Fort Irwin, CA.

Charis Professional Services Corporation. April 2004. Supplemental Draft Environmental Impact Statement: Proposed addition of maneuver training land at Fort Irwin, CA. Prepared for U.S. Army National Training Center and Fort Irwin, CA.

Climate Assessment for the Southwest (CLIMAS). 2004. Reconstructing past climate in the southwest. See <u>http://www.ispe.arizona.edu/climas/research/paleoclimate/product.html</u>

Grinnell, J., and J. Dixon. 1918. Natural history of the ground squirrels of California. Pp. 5-116 *In* W.C. Jacobsen, ed., California Ground Squirrels: A bulletin dealing with life histories, habits and control of the ground squirrels in California, Monthly Bulletin, California State Commission of Horticulture, 7(11-12).

Gustafson, J.R. 1993. A status review of the Mohave ground squirrel (*Spermophilus mohavensis*). A report to the California Fish and Game Commission, Nongame Bird and Mammal Section Report 93-9.

Hafner, D.J. 1992. Speciation and persistence of a contact zone in Mojave Desert ground squirrels, subgenus *Xerospermophilus*. Journal of Mammalogy 73(4):770-778.

Hafner, J.H., and T.L. Yates, 1983. Systematic status of the Mojave ground squirrel, *Spermophilus mohavenis*, (subgenus *Xerospermophilus*). Journal of Mammalogy 64(3):397-404.

Hall, E.R. 1981. The mammals of North America. John Wiley and Sons, New York, second edition, Volume I, 600 pp. plus indices.

Harris, J.H. and P. Leitner. 2005. Long-distance movements of juvenile Mohave ground squirrels, *Spermophilus mohavensis*. The Southwestern Naturalist 50:188-196.

Harris, J.H., and P. Leitner. 2004. Home range and use of space in Mohave ground squirrels (*Spermophilus mohavensis*). Journal of Mammalogy 85:517-523.

Harris, J.H., and P. Leitner. 1999. Movements and home range of adult Mohave ground squirrels (*Spermophilus mohavensis*). Abstract from American Society of Mammalogists annual meeting, University of Washington, June 20-24.

Harris, J.H., P. Leitner, and A. Tschohl. 1998. Juvenile dispersal in Mohave ground squirrels. Abstract from Western Section of the Wildlife Society Annual Meeting.

Hoff, K.v.S, and R.W. Marlow. 2002. Impacts of vehicle road traffic on desert tortoise populations with consideration of conservation of tortoise habitat in southern Nevada. Chelonian Conservation and Biology, 4(2):449-456.

Holland, R.F. 1986. Preliminary descriptions of the terrestrial natural communities of California. California Department of Fish and Game (Sacramento), Nongame Heritage Program Report, 156 pp.

Hoyt, D.F. 1972. Mohave ground squirrel survey, 1972. California Department of Fish and Game (Sacramento), Special Wildlife Investigations report, 10 pp.

Ingles, L.G. 1965. Mammals of the Pacific states: California, Oregon, and Washington. Stanford University Press, Stanford, CA 506 pp.

IUCN 2003. 2003 IUCN Red List of Threatened Species.

Krzysik, A.J. 1991. Ecological assessment of military training effects on threatened, endangered, and sensitive animals and plants at Fort Irwin, California. U.S. Army Corps of Engineers Resource Laboratory (Champaign, IL), 107 pp.

Laabs, D. 2002. Mohave ground squirrel (*Spermophilus mohavensis*). Species review conducted in association with the Western Mojave Habitat Conservation Plan and California Desert Conservation Area Plan Amendment.

LaRue, E.L., Jr. 1993. Distributions of desert tortoise sign adjacent to Highway 395, San Bernardino County, California. Proceedings of the 1992 Desert Tortoise Council Symposium 1993: 190-204.

Leitner, P. 1980. Survey of small mammals and carnivores in the Coso Geothermal Study Area. Report IV *In* Field Ecology Technical Report on the Coso Geothermal Study Area, a Rockwell Internation (Newbury Park, CA) report to U.S. Bureau of Land Management (Bakersfield, CA). Leitner, P. 2004. Mohave Ground Squirrel trapping survey in the region between U.S. highway 395 and the Mojave River, San Bernardino County. Draft report to Desert Tortoise Preserve Committee, October, 2004.

Leitner, P. 2005a. Mohave Ground Squirrel Study Results 2004. Results prepared for Mohave Ground Squirrel Technical Advisory Group, Febraury 2, 2005.

Leitner, P. 2005b. Conservation Issues: Threats to Mohave Ground Squirrel. Presentation at the Mohave ground squirrel Workshop, Ridgecrest, April 2005.

Leitner, P., and B.M. Leitner. 1989. First year baseline report: Coso grazing exclosure monitoring study, Coso Known Geothermal Resource Area, Inyo County, California. McClenahan and Hopkins Associates (San Mateo, CA) report, 69 pp. plus appendices.

Leitner, P., and B.M. Leitner. 1990. Second year baseline report: Coso grazing exclosure monitoring study, Coso Known Geothermal Resource Area, Inyo County, California. McClenahan and Hopkins Associates (San Mateo, CA) report, 96 pp.

Leitner, P., and B.M. Leitner. 1992. Mohave ground squirrel study in the Coso grazing exclosure monitoring study, Coso Known Geothermal Resource Area, Inyo County, California, May – June 1991. McClenahan and Hopkins Associates (San Mateo, CA) report to U.S. Navy, China Lake Naval Air Weapons Station (China Lake, CA), 30 pp. plus appendices.

Leitner, P., and B.M. Leitner. 1998. Coso grazing exclosure monitoring study: Mohave Ground Squirrel Geothermal Resource Area Major Findings, Final Report.

Leitner, P., B. M. Leitner, and J. Harris. 1991. Third year baseline report: Coso grazing exclosure monitoring study, Coso Known Geothermal Resource Area, Inyo County, California. McClenahan and Hopkins Associates (Bethesda, MD) report, 73 pp. plus appendices.

Leitner, P., B. Leitner and J.H. Harris. 1995. Mohave ground squirrel study in Coso Known Geothermal Resource Area, Inyo county, California, March-June 1994. Unpublished report prepared on behalf of Jean Hopkins and Associates. Orinda, CA.

Nicholson, L. 1978. The effects of roads on desert tortoise populations. Proceedings of 1978 Desert Tortoise Council Symposium 1978:127-129.

Merriam, C.H. 1889. Description of a new spermophile from southern California. North American Fauna 2:15-16.

Munz, P.A., and D.D. Keck. 1959. A California flora. University of California Press, Berkeley, 1681 pp.

Pengelley, E.T. 1966. Differential developmental patterns and their adaptive value in various specis of the genus *Citellus*. Growth 30:137-142.

Recht, M.A. 1977. The biology of the Mohave ground squirrel, *Spermophilus mohavensis*. PhD dissertation, University of California, Los Angeles, 117 pp.

Soule, M.E. 1986. Inbreeding depression. Introduction to Section 1: The fitness and viability of populations *In* M.E. Soule, ed., conservation Biology: The science of scarcity and diversity, Sinauer Associates, Inc., Sunderland, MA, 584 pp.

Stewart, G.R. 1993. A listing petition to the U.S. Fish and Wildlife Service. 35 pp.

Tomich, P.Q. 1982. Ground squirrels: *Spermophilus beecheyi* and allies. Chapter 10 *In* J.A. Chapmna and G.E. Feldhamer, eds., Wild Mammals of North America: Biology, management, and economics, The Johns Hopkins University Press, Baltimore, 1147 pp.

Wessman, E.V. 1977. The distribution and habitat preferences of the Mohave ground squirrel in the southeastern portion of its range. California Department of Fish and Game, Wildlife Management Branch Administrative Report 77-5, 15 pages plus appendices.

West Mojave Plan: A Habitat Conservation Plan and California Desert Conservation Area Plan Amendment. Draft May 2003. Bureau of Land Management.

West Mojave Plan West Mojave Plan: A Habitat Conservation Plan and California Desert Conservation Area Plan Amendment. Final March 2005. Bureau of Land Management.

Western Mojave Desert Off Road Vehicle Designation Project: Environmental Assessment and Draft CDCA Plan Amendment. 2003. Bureau of Land Management, 140 pp.

U.S. Census Bureau 2000. See <u>http://eire.census.gov/popest/data/counties/tables/CO-EST2001-12/CO-EST2001-12-06.php</u>

Vasek, F.C., and M.G. Barbour, 1988. Mojave desert scrub vegetation. Chapter 24 *In* M.G. Barbour and J. Major, eds., Terrestrial vegetation of California, expanded edition, California Native Plant Society Special Publication No. 9, 1030 pp.

von Seckendorff Hoff, K., and R. Marlow. 1997. Highways and roads are population sinks for desert tortoises. Proceedings: Conservation, restoration, and management of tortoises and turtles – an international conference, p. 482.

Zembel, R. and C. Gall. 1980. Observations on Mohave ground squirrels, *Spermophilus mohavensis*, in Inyo County, California. Journal of Mammalogy 61(2):347-350.

Zembel, R., C. Gall, D. Kruska, and P. Lobnitz. 1979. An inventory of the vascular plants and small mammals of the Coso Hot Springs area of Inyo County, California. U.S. Navy,

China Lake Naval Weapons Center (China Lake, CA) Administrative Publication 202, 154 pp.

Table 1. Mohave Ground Squirrel GIS Results – Threats

Summary Statistics Mojave Ground Squirrel Range Total habitat disturbance Remaining Potential Habitat	<u>Hectares</u> 1,980,937 1,550,746 430,190	<u>Acres</u> 4,892,913 3,830,343 1,062,570	Percentage of Mohave ground squirrel Range 100 78.3 21.7	
Туре	<u>Hectares</u>	Acres	Percentage of Mohave ground squirrel Range	<u>Source</u>
Dry Lake Beds Rural Development	49,562 11,365	122,418 28,071	2.5 0.6	NHD CALVEG
Urban Development	44,063	108,836	2.2	BLM
Agriculture DOD Land	37,390 683,825	92,354 1,689,048	1.9 34.5	BLM CALVEG
Assumed Curtailment of Range. (area south of 58 with the exception of Edwards Air Force				
Base)	410,460	1,013,837	20.7	CalTrans
Authorized ORV Use - 3 Meter Buffer	2,939	7,258	0.1	Legacy
Highways 400 Meter Buffer	66,224	163,573.68	3.3	CalTrans
Fort Irwin Expansion Current BLM Grazing Allotments - three	30,560	75,483	1.5	GreenInfo
categories:				BLM
Sheep	302,209	746,457	15.3	BLM
Cattle	179,335	442,959	9.1	BLM
Sheep & Cattle	52,391	129,406	2.6	BLM
Total Grazing Allotments	533,936	1,318,822	27.0	

The following were included as current, active grazing allotments:

• <u>Cattle</u>: Hunter Mountain, Lacey Cactus McCloud, Olancha, Walker Pass, Pilot Knob, Harper Dry Lake

• <u>Sheep</u>: Cantil Common, Spangler Hills, Lava Mountains, Monolith Cantil, Bissell, Boron, Shadow Mountains, Stoddard Mountain Middle Unit, Buckhorn Canyon

• <u>Sheep with desert tortoise CH acreage partially or completely excluded</u>: Boron, Buckhorn Canyon, Cantil Common, Lava Mountains, Monolith Cantil, Shadow Mountains, Stoddard Mountain West Unit

• Cattle with desert tortoise CH acreage partially or completely excluded: Pilot Knob, Harper Dry Lake

• <u>Cattle and Sheep</u>: Tunawee, Rudnick, Hansen

Table 2. Ownership and Protected Status of Mohave Ground Squirrel Range

Mohave Ground Squirrel Range	Hectares 1,980,937	Acres 4,892,913		
Ownership	<u>Hectares</u>	Acres	Percentage of Mohave Ground Squirrel Range	
DOD Ownership				
- China Lake s	410,678	1,014,373	20.7	Legacy
- Fort Irwin	145,981	360,573	7.4	Legacy
- Edwards Air Force Base	124,468	307,435	6.3	Legacy
- Air Force Plant 42	2,397	5,922	0.1	Legacy
- Mojave Marine Corps Auxiliary Air Station	261	644	0.0	Legacy
- Other	41	101	0.0	Legacy
DOD Total	683,825	1,689,048	34.5	
BLM Ownership	630,112	1,556,377	31.8	Legacy
Private Ownership	614,733	1,518,390	31.0	Legacy
Other Protected Lands (see below)	52,267	129,099	2.7	Legacy
Protected Lands				
a) Federal Wilderness Areas				
- Argus Range	6,253	15,444	0.3	BLM
- Black Mountain	8,480	20,946	0.4	BLM
- Coso Range	21,196	52,355	1.1	BLM
- Darwin Falls	3,493	8,627	0.2	BLM
- Death Valley	14,799	36,553	0.7	BLM
- El Paso Mountains	9,836	24,295	0.5	BLM
- Golden Valley	14,794	36,542	0.7	BLM
- Grass Valley	13,304	32,861	0.7	BLM

Petition to list the Mohave ground squirrel Page 40 of 49

lonnia Lakos	226	592	0.0		DI M
- Jennie Lakes Kiavah	2,50	6 032	0.0		
- Mavair Malpais Mosa	2,000	0,932	0.1		
- Malpais Mesa	3,390	0,374 5 404	0.2		DLIVI DL M and ES
- Owerls Feak	2,190	0,424	0.1		DLIVI and FS
- Sacalar Itali	1,191	2,941	0.1		DLIVI and FS
- Other	530	1,310	0.0		BLIM and FS
wilderness lotal	102,505	253,180	5.2		
b) The Desert Tortoise Natural Area	10,359	25,587	0.5		BLM
c) DFG Ecological Reserves/Preserves					
- Fremont Valley ER	677	1,673		0.0	Legacy
- Indian Wells Valley	33	81		0.0	Legacy
- Indian Joe Spring ER	219	542		0.0	Legacy
 West Mojave Desert ER 	4,727	11,676		0.2	Legacy
 Desert Tortoise Habitat 	420	1,038		0.0	BLM
- Mojave River	375	927		0.0	Legacy
DFG Total	6,452	15,937	0.3		
d) State Parks					
-Red Rock Canvon Preserve State Park	7 689	18 003		04	Legacy
-Saddleback Butte State Park	1,005	2 941		0.4	Legacy
State Parks Total	8,880	21.934	0.5	0.1	Leguey
	,				
Other Protected Lands (by ownership)					
-CDFG	6,452	15,937	0.3		Legacy
-CDPR	8,943	22,090	0.5		Legacy
-Local	8,640	21,341	0.4		Legacy
-NPS	17,824	44,026	0.9		Legacy
-Other State	8,625	21,305	0.4		Legacy
-USFS	1,781	4,400	0.1		Legacy
Total Other Protected Lands	52,267	129,099	2.7		
Total Dratastad	400.402	445 740	0.4		
I OTAL PROTECTED	180,463	440,743	9.1		

Figure 2. Current range of the Mohave ground squirrel from Gustafson (1993).

Figure 3. Mohave Ground Squirrel Survey Results 2002-2004 (Leitner 2005)

Figure 4. Coso Study Results

From Leitner (2005a). Data are numbers of adults captured over 5 days with 2 days of prebaiting using 441 traps with 25-meter spacing. There are no comparable data available for 1991 and for 1997 through 2000.

Figure 5. Current Mohave Ground Squirrel Status.

Status coverages from Leitner (2005b). Please note that the colored areas on Figure 5 are meant to be approximate and do not represent hard boundaries or even necessarily proportional areas inhabited by Mohave ground squirrels.

Figure 6. Mohave Ground Squirrel Land Ownership. Defenders of Wildlife GIS Mohave Ground Squirrel Threats Analysis

Figure 7. Mohave Ground Squirrel Threats. Defenders of Wildlife GIS Mohave Ground Squirrel Threats Analysis

Figure 8. Mohave Ground Squirrel Remaining Range. Defenders of Wildlife GIS Mohave Ground Squirrel Threats Analysis

Figure 9. West Mojave Plan Mohave Ground Squirrel Conservation Area Compared to Current Status

The shaded area represents the WEMO Mohave Ground Squirrel Conservation Area, the horizontal hatched areas outlined with a thick border represent the core Mohave ground squirrel populations, the areas outlined in dashed lines are the low density Mohave ground squirrel populations, and the speckled fill areas are identified barrier areas.

MOJAVE GROUND SQUIRREL

Land Ownership

MOJAVE GROUND SQUIRREL

Threats

MOJAVE GROUND SQUIRREL

Remaining Range

